Gemini Integration
How Simili Bot uses Google Gemini for AI analysis.Services
Simili Bot uses Gemini for:- Text Embeddings - Convert text to vectors
- LLM Analysis - AI reasoning and classification
Embeddings
text-embedding-004
Default embedding model:- Convert issue text to vector for similarity search
- Generate embeddings for all issues during indexing
LLM Analysis
Uses Gemini for analysis tasks:1. Duplicate Detection
2. Quality Assessment
3. Issue Routing
4. Auto Triage
Models
Currently supports:text-embedding-004- Embeddings (default, recommended)
Configuration
API Quotas
Free Tier:- Embeddings: 50 requests/minute
- LLM Calls: 15 requests/minute
- Generous monthly limits
- Pay-as-you-go
- Higher quotas available
Error Handling
Graceful degradation if Gemini unavailable:Performance
Typical latencies:- Embedding request: 200-500ms
- LLM analysis: 2-5 seconds
- Batch embedding: 500ms-2s
Cost Estimation
For 1,000 issues:- Embeddings: ~$0.01-0.05 (bulk indexing)
- LLM analysis: $0.10-0.50 per issue (depends on features)
- Typical total: $100-500/month for active repo
- Disabling unnecessary features
- Using
similarity-onlyworkflow - Archiving old issues
- Batching operations